Tag Archives: computing

DNA nanomachines could be produced inexpensively in almost limitless quantities

from EurekAlert:

DURHAM, N.C. – In a single day, a solitary grad student at a lab bench can produce more simple logic circuits than the world’s entire output of silicon chips in a month.

So says a Duke University engineer, who believes that the next generation of these logic circuits at the heart of computers will be produced inexpensively in almost limitless quantities. The secret is that instead of silicon chips serving as the platform for electric circuits, computer engineers will take advantage of the unique properties of DNA, that double-helix carrier of all life’s information.

“Like neurons in the brain”: A molecular computer that evolves

from h+ Magazine: (Previously covered here)

The press release from Michigan Tech asserts that it is “the first time a brain-like ‘evolutionary circuit’ has been realized.”

His new molecular computer uses an organic molecular layer and can evolve to solve complex problems, similar to neurons. Like the human brain — and unlike any existing computer — the tiny molecular computer heals itself if there is a defect.

Anirban Bandyopadhyay, from the Japanese National Institute for Materials Science, explains: “No existing man-made computer has this property, but our brain does. If a neuron dies, another neuron takes over its function.”

Siftables are changing the shape of computing

from Singularity Hub: ⇦ More videos at source

What if computers were more like a child’s wooden blocks?

Siftables are a new approach to computing developed by David Merrill and Jeevan Kalanthi. Each small square electronic tile has a small screen, motion sensors, and RF signals. The siftables interact with each other, letting you use orientation, proximity, and movement to control their performance.

A single molecule computes thousands of times faster than your PC

from PopSci:

A demo of a quantum calculation carried out by Japanese researchers has yielded some pretty mind-blowing results: a single molecule can perform a complex calculation thousands of times faster than a conventional computer.

A proof-of-principle test run of a discrete Fourier transform — a common calculation using spectral analysis and data compression, among other things — performed with a single iodine molecule transpired very well, putting all the molecules in your PC to shame.

The substance found in pencils will speed up our computers one thousand fold

from h+ Magazine:

Graphene. If you’ve never heard about it, don’t worry, a lot of people haven’t, because it’s really only been “discovered” relatively recently, and most of the truly interesting news about it has been in the last year.

“We’re talking about that smartphone in your pocket having a thousand times the computing power of your desktop PC, but using no more power.”

“Wet computer” that mimics neurons to be created

from whatisartificialintelligence.com:

The project “Wet computer” also known as Chemical or Molecular computing is a form of computational model that mimics the characteristics of the human cells, particularly the brain cells called neurons.

As described by Dr. Klaus-Peter Zauner, project collaborator of the University of Southampton, “wet computer” takes advantage of the lipid-forming characteristic of stable “cells” that forms a coating spontaneously and uses chemistry to establish interactions among these cells similar to that of human neurons.

The power of plant clock computing

from MIT’s Technology Review:

A newfound ability to model the complex feedback loops that control plant clocks could have important implications for computing.

One of the limitations of conventional thinking in computation is that computable functions proceed in a sequential manner, one independent step after another. When computer scientists talk of parallelism, they usually mean carrying out more than one of these independent linear computations at the same time.

In the biological world, things are more complex because steps in biological computations may not be independent.